Ładowanie danych z Databricks do Azure Synapse Analytics

Problem:

Zadanie zostało zdefiniowane przez managera w ten sposób:
– Dane z Databricks mają zostać przesłane na Azure Synapse
– Security utworzyło i otworzyło odpowiednie private endpointy.
– Dostałeś też namiary na service principala, którego wykorzystasz do zapisywania danych z Databricks na Azure Synapse.

Będziesz używał sparka, żeby od razu stworzył tabelę i dane. Będzie to szczególnie pomocne gdyż danych nie jest zbyt dużo. Nie powinno być żadnych problemów wydajnościowych.
Niestety pojawiają się problemy zupełnie innej natury. Przy próbie wstawienia danych dostajesz błąd:


„com.microsoft.sqlserver.jdbc.SQLServerException: The statement failed. Column 'drone_spec_key’ has a data type that cannot participate in a columnstore index.”

Rozwiązanie:

Spark wysyłał do Synapsa create i insert statement w tym samym czasie. Błąd wynikał z tego, że Synapse przy próbie stworzenia tabeli jednocześnie próbuje stworzyć custered index. Niestety ograniczenie, które posiada to brak możliwości stworzenia indeksu na kolumnach, gdzie typ danych zdefiniowany jest jako: VARCHAR(max), NVARCAHR(MAX) a to się dzieje, gdy spark próbuje stworzyć tabelę.
Jako rozwiązanie zastosowano:
1. Najpierw została tworzona tabela po stronie Azure Synapse Analytics
2. Dopiero później zostały wstawione do niej dane

Szczegóły kodu oraz alternatywne, dające więcej możliwości, rozwiązanie poniżej.

Read More

Qualify w Databricks

Problem:

Działasz na tabeli opisującej procesy produkcji. Jeden proces może występować więcej niż jeden raz w tabeli. Nas interesuje tylko ostatnia data zakończenia procesu. Użyjemy funkcji okienkowej, row_number, żeby oznaczyć proces, który zakończył się jako ostatni. W jaki sposób w tym samy zapytaniu wybrać ten wiersz, bez używania dodatkowych podzapytań lub CTE?

Rozwiązanie:

Użyjemy Qualify! Qualify w Databricks filtruje wyniki zapytania funkcji okienkowej. Możesz myśleć o nim jak warunku zakładanym na wyniku funkcji okienkowej. Upraszcza to znakomicie składnie.

Jak go zastosować:

select process_id, process_name, process_start_date, process_end_date
, row_number() over(partition by process_id order by process_end_date desc) as rn
from d_process
qualify rn = 1

Read More

Databricks: Jak znaleźć wolno działający notebook?

Problem:

Czas procesowania danych w Databricks zwiększył się dwukrotnie. Poprzednio wynosił 3 godziny teraz wynosi 6. Zanim podejmiesz proces naprawy trzeba sprawdzić który notebook spowodował aż tak duży spadek wydajności. Czy spadek wydajności rozlał się równomiernie pomiędzy wszystkie notebooki? Czy dotyczy tylko części? Możemy wykluczyć, że ktoś inny pracował na platformie w tym samym czasie i wpływał na wydajność. Cluster jest dedykowany do przetwarzań batchowych i nikt inny nie ma do niego dostępu.

Rozwiązanie:

Użyjemy Databricks rest API, żeby przeszukać wszystkie joby i znaleźć ten, który trwał najdłużej w porównaniu z poprzednim ładowaniem. Gdy znajdziemy, który to job, wtedy przeszukamy wszystkie taski i sprawdzimy czy są jacyś pojedynczy kandydaci, których wydajność zdecydowanie spadła i znajdziemy wolno działający notebook.

Read More

Azure storage file datalake do pobierania plików?

Problem:

Masz dostępne Databricks, Pythona i Azure Storage Account. Potrzebujesz pobrać raport Power BI umieszczony na Azure Storage account przy pomocy Pythona.
Potem ten plik należy opublikować w serwisie Power BI.
Nie możesz tego zrobić przy użyciu Sparka, albo Pandas. To się nie uda i jednocześnie, to nie jest to zadanie.
Możesz instalować bilbioteki na clustrze. Najlepiej, żeby ich autorem był Microsoft.

Rozwiązanie:

Microsoft udostępnia bibliotekę: azure.storage.filedatalake przy pomocy której można przeczytać plik z landing zone w formacie binarnym a potem opublikować go w portalu Power BI.

Wystarczy z kontenera przeczytać plik. Ta zawartość zostanie wczytana w formacie binarnym:
file_content = file_container.download_file()

A potem opublikować go w Power BI portalu:
publish_powerbi_report(PBI_WORKSPACE_ID, PBI_REPORT_NAME, file_content)

Read More

Databricks: Jak pobrać pliki binarne z Azure Storage Account używając Pythona?

Problem:

Masz dostępne Databricks, Pythona i Azure Storage Account. Potrzebujesz pobrać plik z Azure Storage account przy pomocy Pythona w formacie binarnym. Jeżeli chcesz zrobić to przy użyciu Sparka, albo Pandas to nie jest to zadanie.
Dane masz pobrać z pliku binarnego.
Trzeba użyć modułów Pythona do wczytywania plików.
W dokumentacji piszą, że taka operacja jest „not supported”. (Stan na 15.10.2024)
Nie chcesz też robić „mount” zdalnego systemu plików. Taka operacja jest nie polecana przez Databricks.

Rozwiązanie:

W Databricks z Pythona NIE można czytać plików ze zdalnego systemu plików. Można za to czytać pliki z lokalnego file systemu. Obejście problemu przedstawionego powyżej to:
1. Przy użyciu dbutils.fs albo %fs skopiować pliki ze zdalnego filesystemu do lokalnego.
2. Przeczytać pliki z lokalnego systemu plików przy użyciu Pythona.
Skasować skopiowany plik z lokalnego filesystemu.

Read More

Databricks: Jak nie przechowywać sekretów?

Problem: Robisz audyt konfiguracji Databricks klastra stworzonego w Twojej organizacji. Przechowywanie sekretu do Azure storage account znajdujesz w spark configu. Jest tam zapisana taka właśnie konfiguracja:

fs.azure.account.oauth2.client.secret.storageaccountname.dfs.core.windows.net xsda33jncsax-secretinplaintext
Sekret jest przechowywane w czystym tekście.

Rozwiązanie: Akurat w tym przypadku autentykacja wykonywana jest przy pomocy service principala. Wszystkie sekrety przechowywane są w Key Vault a w Databricks stworzony jest secret scope. W konfiguracji sparka na poziomie klastra wystarczy ustawić wystarczy więc zrobić tylko tak:

fs.azure.account.oauth2.client.secret.storageaccountname.dfs.core.windows.net secrets/secret-scope/sp-app-secret

I wszystko działa 🙂

Read More

Databricks: Jak ustawić własną wartość dla kolumny identity?

Tło wydarzeń:

Masz tabelę stworzoną w Databricks. Klucz główny ustawiony jest jako kolumna identity. Dzięki temu masz obsłużone wstawianie unikalnych wartości. Nie musisz też tego robić samodzielnie, co tworzy miejsce na pominięcie czegoś. Jednak pojawia się wyzwanie. Twoja „sekwencja” zaczynała wstawianie danych od jedności a teraz chciałbyś wstawić singletony (-1, -2).

Problem:
Chciałbyś wstawić singletony do tabeli, gdzie jedna z kolumn jest typu Identity. W jaki sposób wstawić do niej oczekiwane wartości?

Rozwiązanie:
Zdefiniuj kolumnę klucza głównego jako:

generated by default as identity

Ale uważaj, jest jeden przypadek, gdy tak zdefiniowana kolumna może sprawić problemy.

Read More

Jaki jest rzeczywisty rozmiar pliku w Databricks?

Problem:
Czy Optimize automatycznie usuwa stare pliki? Czy one są ciągle dostępne? Czy po uruchomieniu Optimize na tabeli, liczba wykorzystywanego miejsca na Storage Account będzie mniejsza czy większa?

Po wykonaniu polecenia Optimize, Databricks pokazuje, że tabela jest reprezentowana przez mniejszą liczbę plików, natomiast na Storage Account liczba plików wzrosła. Jak to rozumieć?

Databricks pokazuje rozmiar tabeli / pliku, który nie jest zgodny z tym co widać na Azure Storage account. Która wartość jest prawidłowa? Jak z poziomu Databricks sprawdzić rozmiar pliku?

Rozwiązanie:
Z poziomu Databricks uruchom polecenie:

dbutils.fs.ls(file_path)

Wtedy zobaczysz ile rzeczywiście pliki zajmują. Jeżeli chcesz usunąć niepotrzebne pliki użyj polecenia Vacuum. Tylko pamiętaj, że domyślnie Vacuum, pozostawia na file systemie pliki stworzone w ciągu ostatnich 7 dni.

Read More

Jaki jest rozmiar tabeli, schematu w Databricks?

Problem:
Jaki jest rozmiar tabeli w Databricks? Ile miejsca zajmuje mój schemat? Jak policzyć rozmiar? W jaki sposób sprawdzić ile przybyło danych od ostatniego ładowania? Ile miejsca zajmuje bronze, silver oraz gold layer? Jak to zadanie zautomatyzować? Czy można z tego wyciągnąć jeszcze jakieś wnioski?

Rozwiązanie:
W Databricks dostępne jest polecenie:

describe detail table_name

Umożliwia ono pokazanie rozmiaru w bajtach, wylistowanie ile plików zajmuje obecnie tabela. Pokazuje też kiedy zostało utworzona albo ostatnio załadowana.

Pokażę teraz w jaki sposób, wygląda skrypt, który dla schematu zbiera dane o wszystkich tabelach.

Read More

Databricks explode czyli: jak wygenerować dodatkowe wiersze?

Problem:

Wygenerować dodatkowe wiersze w tabeli na podstawie wartości liczbowej. Wartość liczbowa określa ile wierszy ma być wygenerowanych. Wartość liczbowa zawsze istnieje i przyjmuje wartości od 1 do 10. Dla 1 mają nie być generowane nowe wiersze. Dla 2 mają zostać wygenerowane dwa wiersze, dla trójki trzy wiersze itd.

Rozwiązanie:

Użycie funkcji explode. Przyjmuje ona jako argument tablicę albo mapę. W naszym przypadku stworzymy listę. Będzie ona miała wartości od 1 do n. Gdzie n będzie wartością liczbową z tabeli. Do wygenerowania listy wartości użyjemy funkcji sequence.
Pseudo kod do rozwiązania będzie wyglądał w ten sposób:

explode(sequence(1, quantity, 1))

Read More